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Brain ischemia initiates a complex cascade of
metabolic events, several of which involve the gen-
eration of nitrogen and oxygen free radicals. These
free radicals and related reactive chemical species
mediate much of damage that occurs after transient
brain ischemia, and in the penumbral region of
infarcts caused by permanent ischemia. Nitric oxide,
a water- and lipid-soluble free radical, is generated
by the action of nitric oxide synthases. Ischemia
causes a surge in nitric oxide synthase 1 (NOS 1)
activity in neurons and, possibly, glia, increased
NOS 3 activity in vascular endothelium, and later an
increase in NOS 2 activity in a range of cells includ-
ing infiltrating neutrophils and macrophages, acti-
vated microglia and astrocytes. The effects of
ischemia on the activity of NOS 1, a Ca 2+-dependent
enzyme, are thought to be secondary to reversal of
glutamate reuptake at synapses, activation of NMDA
receptors, and resulting elevation of intracellular
Ca2+. The up-regulation of NOS 2 activity is mediated
by transcriptional inducers. In the context of brain
ischemia, the activity of NOS 1 and NOS 2 is broadly
deleterious, and their inhibition or inactivation is
neuroprotective. However, the production of nitric
oxide in blood vessels by NOS 3, which, like NOS 1,
is Ca 2+-dependent, causes vasodilatation and
improves blood flow in the penumbral region of
brain infarcts. In addition to causing the synthesis of
nitric oxide, brain ischemia leads to the generation
of superoxide, through the action of nitric oxide syn-
thases, xanthine oxidase, leakage from the mito-
chondrial electron transport chain, and other mech-

anisms. Nitric oxide and superoxide are themselves
highly reactive but can also combine to form a high-
ly toxic anion, peroxynitrite. The toxicity of the free
radicals and peroxynitrite results from their modifi-
cation of macromolecules, especially DNA, and from
the resulting induction of apoptotic and necrotic
pathways. The mode of cell death that prevails prob-
ably depends on the severity and precise nature of
the ischemic injury. Recent studies have empha-
sized the role of peroxynitrite in causing single-
stand breaks in DNA, which activate the DNA repair
protein poly(ADP-ribose) polymerase (PARP). This
catalyzes the cleavage and thereby the consumption
of NAD +, the source of energy for many vital cellular
processes. Over-activation of PARP, with resulting
depletion of NAD +, has been shown to make a major
contribution to brain damage after transient focal
ischemia in experimental animals. Neuronal accumu-
lation of poly(ADP-ribose), the end-product of PARP
activity has been demonstrated after brain ischemia
in man. Several therapeutic strategies have been
used to try to prevent oxidative damage and its con-
sequences after brain ischemia in man. Although
some of the drugs used in early studies were inef-
fective or had unacceptable side effects, other trials
with antioxidant drugs have proven highly encour-
aging. The findings in recent animal studies are like-
ly to lead to a range of further pharmacological
strategies to limit brain injury in stroke patients.

Introduction
Ischemic brain damage was, for many years, regard-

ed simply as the passive outcome of reducing the oxy-
gen supply of neurons and other cells below the thresh-
old for adequate energy production to allow their sur-
vival. However, there is now a large body of experimen-
tal evidence to indicate that much of the damage is
mediated by active processes, many of which lead to or
result from the production of free radicals and other
highly reactive, oxidizing chemical species. Research
using animal models has shown pharmacological inter-
vention in several of these processes to reduce substan-
tially the brain damage and neurological dysfunction
that result from ischemia.
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Sources of reactive nitrogen and oxygen species in
brain ischemia

Nitric oxide.Nitric oxide (NO•) is a water- and lipid-
soluble free radical with diverse biological activities,
including vasodilatation, inhibition of platelet aggrega-
tion, inhibition of smooth muscle proliferation, modula-
tion of neurotransmission, promotion of synaptogenesis
and synaptic remodelling, an involvement in long-term
potentiation and depression, and antimicrobial toxicity
(45, 51, 107, 115, 124, see also 19, 20, 90). It is pro-
duced in the body by the activity of nitric oxide syn-
thases (see box below).

Nitric oxide synthases.The members of the nitric
oxide synthase (NOS) family are all large (~300 kDa)
protein homodimers that catalyse the conversion of L-
arginine first to N-hydroxyl-arginine, and then L-cit-
rulline and NO• (68, 98). These reactions are coupled to
the donation of two electrons by NADPH. Activation of
NOS requires the binding of calmodulin (CaM). Other
necessary cofactors are FAD, FMN, heme and tetrahy-
drobiopterin. Two of the known types of mammalian
NOS (NOS 1 and 3) bind CaM in a reversible Ca2+-
dependent manner (hence the designation cNOS for
both types). Because the normal intracellular levels of
Ca2+ are too low to allow the binding of CaM to these
types of NOS, they are active only during periods of
transient, agonist-induced elevations in intracellular
Ca2+. The third type of NOS (NOS 2) binds CaM even at
very low concentrations of intracellular Ca2+ and is
therefore constitutively active. Regulation of NOS 2
activity is primarily mediated by a wide range of tran-
scriptional inducers (including several cytokines, and
hypoxia) and inhibitors, although post-transcriptional
and post-translational control mechanisms also play a
role. Hypoxia has been shown to induce increased tran-
scription of NOS 3 by endothelial cells in culture (2).

Although the preferred terminology for NOS is as
indicated above, NOS 1 is still often referred to as neu-

ronal NOS or nNOS, reflecting the fact that it was ini-
tially purified from neurons. NOS 3, first purified from
endothelial cells, is also known as endothelial NOS or
eNOS, and NOS 2 as inducible NOS or iNOS. However,
nitric oxide synthases occur in a wide variety of other
cell types. Although NOS 1 is the principal neuronal
form of NOS and, indeed, the predominant NOS in the
normal nervous system, all three forms of NOS have
been reported to be expressed in some populations of
neurons. In addition, NOS 1, NOS 2 and possibly NOS
3 have been detected in astrocytes, and NOS 1 in oligo-
dendrocytes and microglia (see 24, 25, 69, 89, 98).
Three splice variants of NOS 1 (a, b and g) have been
identified, of which NOS 1a accounts for most NOS
activity in the brain. NOS 1b may be a significant addi-
tional source of NO in some regions, such as the stria-
tum and lateral tegmental nuclei in the pons (32). Two
further human NOS genes that show close sequence
similarity to the previously identified human NOS 2
gene and are also on chromosome 17 were identified by
Bloch et al (8) and designated NOS 2B and 2C (NOS 2
being renamed NOS 2A); the biological significance of
these additional NOS 2-like genes is still unclear.

NOS activity and brain ischemia.The activity of all
three forms of NOS increases after the initiation of
ischemia, NOS 1 and 3 within minutes (see The roles of
glutamate in ischemic damage) and NOS 2 after several
hours (see 18,61,112). The surge in NOS 1 activity is
short-lived, declining to normal by about 60 min,
although ischemia has been reported to induce increased
transcription of NOS 1 mRNA for up to 7 days (152).
NOS 2 activity in ischemic brain tissue probably derives
from infiltrating neutrophils, microglia, macrophages
and astrocytes as well as vascular endothelial cells, and
remains elevated for several days. The sources of NOS
2 vary somewhat according to the nature of the ischemic
insult. In frank infarcts caused by sustained focal
ischemia, neutrophils and macrophages are probably the
principal source of NOS 2. Transient focal and global
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Designation Synonyms Activity dependent Time course Chromosomal location
on elevated iCa 2+ of activity

NOS 1 neuronal NOS, nNOS, ncNOS yes transient 12q24.2-q24.31*

NOS 2A inducible NOS, iNOS no continuous 17cen-q11.2†

NOS 2B 17p13.1-q25†

NOS 2C 17p13.1-q25†

NOS 3 endothelial NOS, eNOS, ecNOS yes transient 7q36‡

* Reference 145
† Reference 8
‡ References 88 and 116



ischemia have been reported to induce NOS 2 expres-
sion by vascular cells and astrocytes respectively. The
increase in NOS 3 activity is briefer than that of NOS 2,
but elevated levels of NOS 3 can be detected for several
hours after transient ischemia, and a delayed increase in
NOS 3 occurs at the periphery of the region of infarction
and is sustained for several days (5, 153).

Superoxide and hydroxyl radicals.Particularly
under conditions of reduced availability of L-arginine or
tetrahydrobiopterin, when NOS activity is uncoupled
from electron donation by NADPH, the synthesis of
NO• is accompanied by the production of superoxide
(O2•-) and hydrogen peroxide (H2O2). Superoxide is the
dissociated form of the weak acid, perhydroxyl radical
(HO2•-) but at physiological pH only about 1% of is
combined with H+ as HO2•-. The reaction of superoxide
with hydrogen peroxide leads to the formation of high-
ly reactive hydroxyl free radicals. Sources other than
NOS of superoxide include xanthine oxidase, NADPH
oxidase, cyclo-oxygenases and leakage from the elec-
tron transport chain.

Xanthine oxidase is a biochemically-modified form
of xanthine dehydrogenase. Normally, xanthine dehy-
drogenase catalyses the oxidation of xanthine and
hypoxanthine to uric acid, with NAD+ as the electron
acceptor. Xanthine oxidase, modified from xanthine
dehydrogenase by oxidation (eg, after transient
ischemia) or limited proteolysis, uses oxygen as the
electron acceptor so that the oxidation of xanthine and
hypoxanthine generates superoxide and hydrogen per-
oxide and contributes to brain injury during reperfusion
after ischemia (7, 52, 103). NADPH oxidase is present
in neutrophils and macrophages and generates superox-
ide and hydrogen peroxide within the phagocytic vac-
uoles (35, 50). Studies of mutant mice lacking a func-
tional NADPH oxidase suggest that there is also signif-
icant endogenous NADPH oxidase activity within the
central nervous system and that this contributes to
superoxide generation and tissue damage in ischemic
brain injury (140). Some of the superoxide that is pro-
duced during brain ischemia and reperfusion can be
inhibited by the administration of indomethacin and is
probably generated by cyclo-oxygenases (110).
Superoxide is also produced by the mitochondrial elec-
tron transport chain, particularly under conditions of
brain ischemia (27, 108).

Peroxynitrite and related species.Nitric oxide and
superoxide rapidly combine to form peroxynitrite,

which is much more toxic to DNA and other macromol-
ecules than is either of its precursors (6, 16, 133). Other
potentially damaging metabolites of nitric oxide include
the nitrogen dioxide radical •NO2 and nitryl chloride
(NO2Cl), formed by reaction of nitrite, an end-product
of nitric oxide metabolism, with hypochlorous acid
(HOCl), itself produced by the action of myeloperoxi-
dase in neutrophils (29, 30, 139).

Beneficial and deleterious effects of NOS in
ischemia

The complex balance of protective and destructive
effects of NOS activation in brain ischemia has been the
subject of several excellent reviews (eg, 17, 18, 59, 122).
In general, the administration of selective inhibitors of
NOS 1 or NOS 2 results in a reduction of infarct volume
and other measures of ischemic damage (41, 62, 63, 94,
149, 151). As might therefore be expected, disruption of
either of the corresponding NOS genes results in ame-
lioration of brain damage after ischemia (48, 58, 60,
150, see 55). There are, as yet, no selective inhibitors of
NOS 3, but mice with disruption of the NOS 3 gene
have been generated and used to study the effects of this
type of NOS in brain ischemia (56, 57, 84). Unlike NOS
1 and NOS 2 knockout mice, the NOS 3 knockouts
develop larger infarcts than do their wild type counter-
parts. The analysis of changes in ischemic brain damage
in the NOS 3 knockout mice is complicated by the fact
that the loss of the normal basal vasodilatation mediated
by endothelial production of NOo causes these mice to
be hypertensive (56). However, normalization of their
blood pressure by the administration of hydralazine did
not reduce the size of infarct caused by temporary mid-
dle cerebral artery occlusion whereas inhibition of resid-
ual NOS 1 and 2 activity by an infusion of nitro-L-argi-
nine did (57). Functional CT scanning has shown the
penumbral zone in NOS 3 knockout mice to be nar-
rowed and perfusion in this zone to be reduced (84).
These findings are in keeping with earlier observations
that intravascular administration of nitric oxide donors
during the first 2 h after induction of ischemia improve
penumbral blood flow and lessen brain damage (see 17,
18, 59, 122).

The above studies indicate that the initial nitric
oxide-mediated vasodilatation and enhanced penumbral
perfusion that result from the activation of NOS 3 are
neuroprotective, at least during the first 2 h after the
ischemic insult. However, the overall effects of
enhanced NOS 1 and NOS 2 activity after ischemia are
detrimental.
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The role of glutamate in ischemic damage
Glutamate is an excitatory neurotransmitter that is

widely expressed within the central nervous system. It
that binds to two distinct families of receptors, the
metabotropic receptors, linked to the activation of phos-
pholipase C and inhibition of adenyl cyclase (125), and
the ionotropic receptors, that are linked to ion channels
(96, 145). The latter family of glutamate receptors com-
prises three types, named according to their differential
sensitivity to the agonists N-methyl-D-aspartate
(NMDA), kainic acid (KA) and alpha-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA).
The non-NMDA ionotropic glutamate receptors (ie, the
KA and AMPA receptors) have much faster kinetics
than the NMDA receptors whereas only the latter
respond to activation by increasing Ca2+ permeability.
However, activation of all of the ionotropic glutamate
receptors leads to an increase in Na+ and K+ permeabili-
ty and the resulting depolarization can secondarily acti-
vate voltage-sensitive Ca2+ channels (see 54, 91).
Activation of the metabotropic glutamate receptors may
also contribute to a rise in intracellular Ca2+ in ischemia,
as a result of the mobilization of Ca2+ from intracellular
stores (93, see 91).

Under normal circumstances, the action of glutamate
that is released at synapses is terminated by its uptake
from the extracellular space by a family of glutamate
transporter proteins. The energy that drives this uptake
derives from the linked transport of Na+ and K+ down
their respective electrochemical gradients: Na+ is co-
transported with glutamtate into the cell (glial or neu-
ronal) and K+ out of the cell (1, 4, see 136). Each cycle
of glutamate transporter activity also results in the trans-
fer of one proton-equivalent but it is unclear whether
this reflects the transport of H+ into the cell or OH- out-
wards.

After the onset of ischemia, anerobic metabolism
leads to a fall in pH, and depletion of ATP to slowing
and then failure of the Na+/K+ pump, resulting in the
movement of these ions down their electrochemical gra-
dients across the plasma membrane: Na+ into the cell
and K+ outwards. This redistribution is initially gradual
but after about 2 min occurs more rapidly, as the mem-
branes depolarize. The membrane depolarization and
the change in the concentration gradients of Na+ and K+

across the plasma membrane cause reversal of the direc-
tion of action of the glutamate transporter proteins (see
135, 136), as a result of which glutamate rapidly accu-
mulates extracellularly until it reaches neurotoxic levels.

The accumulation of glutamate is a monophasic, rel-
atively short-lived event after ischemia, lasting no more

than 5-10 min. The consequence is, however, a biphasic
rise in intracellular Ca2+ (127, 128, see 91). The initial,
marked rise is closely coupled temporally to the accu-
mulation of glutamate and is largely due to activation of
neuronal NMDA receptors. In many experimental sys-
tems, transient ischemia also induces a secondary, less
marked but sustained rise in intracellular Ca2+, com-
mencing approximately 2-3 h after reperfusion, not
associated with elevated levels of glutamate, and usual-
ly signifying irreversible cell damage.

As might be expected, the initial rise in intracellular
Ca2+ can be prevented by pharmacological blockade of
the NMDA receptors. Less clearly understood is the
physiological basis of the oft-repeated observation that
both the secondary rise in Ca2+ and much of the cell
death in the penumbral region of an infarct can, in many
experimental systems, be prevented by NMDA and
AMPA receptor antagonists even if these are adminis-
tered up to 2 h after the ischemic episode (see 54, 130).
This is may be partly due to post-ischemic potentiation
of Ca2+ influx through NMDA and AMPA channels (see
135). The beneficial actions of glutamate receptor
antagonists administered after ischemia are probably
also attributable to their prevention of recurrent spread-
ing electrical depression, a process that is mediated by
vesicular release of glutamate; under normal circum-
stances this has no long-term deleterious effects but in
penumbral tissue that is of marginal viability, the further
depletion of oxygen and ATP that results from spreading
electrical depression may tip the balance and cause cell
death (see 54, 105). The spreading depression also
induces NOS 1 expression in astrocytes (11).

Whatever the other contributions of glutamate to
ischemic cell death may be, there is little doubt that the
elevation of intracellular Ca2+ which results from the ini-
tial surge in NMDA receptor activation causes the acti-
vation of Ca2+-dependent nitric oxide synthases and the
production of NO• (see Sources of free radicals and
other oxidants in brain ischemia).

Damage to DNA and other macromolecules
Single-strand breaks and base modifications charac-

teristic of oxidative injury to DNA can be detected with-
in minutes of reperfusion after transient brain ischemia,
and double-strand breaks within 1 hour (79, 80, 81, 12).

The major base modifications that result from the
reaction of peroxynitrite with DNA are the conversion
of guanine to 8-nitroguanine and the deamination of
guanine to form xanthine but several other base modifi-
cations are also produced (39, 62, 132). In addition, per-
oxynitrite causes single strand breaks in DNA (39, 62,
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120, 121), as do hydroxyl radicals, superoxide and, to a
lesser extent, nitric oxide (22, 38, 40, 99, 131). Nitric
oxide is capable of causing other modifications to DNA
including its deamination and nitration (82, 99, 144).

Reactive oxygen and nitrogen species have many
other damaging effects on respiration and cell viability.
These include disruption of electron carriers and other
enzymes involved in mitochondrial respiration, binding
of NO• to cytochrome oxidase raising the effective Km

for oxygen of mitochondrial respiration, lipid peroxida-
tion and membrane damage (10, 114, see 46).

Notwithstanding the wide range of mechanisms of
free radical-mediated toxicity described above, the gen-
eration of single strand breaks in DNA, particularly by
peroxynitrite, is probably of key importance in compro-
mising the viability of cells after ischemia of brain tis-
sue (see below, and Apoptosis).

The role of PARP in ischemic damage 
PARP is a zinc-finger DNA-binding protein that is

activated by single- and double-strand breaks in DNA
(74, 134, 143). PARP catalyses the cleavage of NAD+

into adenosine 5’-diphosphoribose (ADP-ribose) and
nicotinamide, and the covalent attachment of polymers
of up to 200-300 ADP-ribose groups to nuclear proteins,
including PARP itself (21, 123, 133). Nuclear proteins
that become poly(ADP-ribosyl)ated include histone H1,
nucleosomal core histones, DNA polymerases a and b,
proliferating cell nuclear antigen, DNA ligase 2, HMG
(high-mobility-group) proteins, and topoisomerases I
and II. Poly(ADP-ribosyl)ation of nuclear enzymes gen-
erally causes a decrease in their catalytic activities, and
inhibits transcription and replication in the presence of
damaged DNA (31, 73, 106). Poly(ADP-ribosyl)ation of

PARP itself inhibits PARP-mediated NADase activity
and poly(ADP-ribose) chain extension (23). PARP asso-
ciates with several other nuclear proteins during DNA
replication, recombination and repair (73, 129). The
function of the poly(ADP-ribose) groups, which are
rapidly degraded, is still unclear. Several physiological
roles have been ascribed to PARP, including recovery
from DNA damage, maintenance of genomic stability,
prevention of DNA recombination, prevention of tran-
scription or replication of damaged DNA, protection of
free ends of DNA from exonuclease action, and unrav-
eling of chromatin structure to allow access of DNA
repair enzymes (21, 64, 73, 118, 126). It has also been
suggested that the principal role of PARP may be to pro-
vide a transcription-independent mechanism to prevent
the survival of mutated, possibly apoptosis-incompetent,
cells after acute DNA damage (95).

The consumption of NAD+ that results when PARP is
activated makes a substantial contribution to brain dam-
age after ischemia, as shown by several studies in which
PARP has either been inhibited or the gene for PARP
disrupted. Takahashi et al (137) produced focal brain
ischemia in rats by a combination of cauterization of a
middle cerebral artery and 90 min occlusion of the
carotid arteries and found that intraperitoneal injection
of the PARP inhibitor 3,4-dihydro 5[4-(1-
piperdinyl)butoxy]-1(2H)-isoquinolinone before and
after the induction of ischemia reduced infarct volume
by up to 53%. A similar reduction in infarct volume was
noted in mice given the PARP inhibitor 3-aminobenza-
mide intracerebroventricularly 10 min before temporary
occlusion of one middle cerebral artery (36). PARP-
knockout mice (141) have also been used to study the
contribution of PARP to ischemic brain damage. Both
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Figure 1. Upregulation of PARP after global brain ischemia in man. a Scant PARP immunoreactivity is present in sections of the CA1
field in a non-ischemic control brain. b Strong nuclear immunolabelling of CA1 neurons and glia 19h after ischemia. c Neurons and
and glia in the temporal neocortex are strongly immunolabeled for PARP 24h after ischemia, especially, as shown here, in the deep
sulcal cortex. Reproduced with permission from NeuroReport 1998; 9: 955-959, reference 86.



Eliasson et al (33) and Endres et al (36) observed a
marked decrease in the size of infarcts produced by tem-
porary middle cerebral artery occlusion in PARP-knock-
out mice compared to that in littermates, with infarct
volumes and neurological deficits being more substan-
tially reduced in homozygous knockouts than in het-
erozygotes. A study by Lo et al (83) confirmed the ben-
eficial action of 3-aminobenzamide in reducing
ischemic brain damage (caused in this study by tempo-
rary middle cerebral artery occlusion in the rat) but also
provided evidence that the deleterious effects of PARP
activation in ischemia may not be due solely to energy
depletion. The authors found that local perfusion of the
cerebral cortex of rats with NMDA, by means of micro-
dialysis probes, caused large elevations of glutamate and
that these could be limited by prior administration of 3-
aminobenzamide, suggesting that PARP activation may
somehow augment glutamate release.

We have shown that PARP is upregulated within
hours of global brain ischemia in man and is strongly
expressed in neurons and glia in the frontal and tempo-
ral cortex for several days afterwards, particularly in
regions of susceptibility to ischemic neuronal degenera-
tion (Fig. 1) (85, 86). The activation of PARP causes
intranuclear accumulation of poly(ADP-ribosyl)ated
proteins, particularly during the first 2 days after global
brain ischemia due to cardiac arrest (Fig. 2a,b) (87).
Double immunolabeling for poly(ADP-ribose) and
MAP2 showed most of the cells with early accumulation
of poly(ADP-ribose) to be neurons (Fig. 2c) (87).
During the first 1-2 d after ischemia, poly(ADP-ribose)
accumulates in cells throughout the ischemic cortex.
Thereafter poly(ADP-ribose) accumulation is largely
confined to variable numbers of cells adjacent to frank
infarcts or regions of ischemic cell damage. Poly(ADP-
ribose) accumulation in neurons and glia may also be
evident during the first 1-2 days after focal atherothrom-
botic infarction, predominantly around the margin of the
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c
Figure 2. (Left) Intranuclear accumulation of poly(ADP-ribo-
syl)ated proteins after global brain ischemia due to cardiac
arrest. a Intense nuclear poly(ADP-ribose) immunoreactivity in
neurons in the frontal cortex, 19 h after cardiac arrest. b By 24
h after cardiac arrest, when the morphological changes of early
ischemic injury are quite pronounced, many neurons still show
nuclear accumulation of poly(ADP-ribose) immunoreactivity. c
Neuronal accumulation of poly(ADP-ribose) in temporal cortex
adjacent to a zone of infarction (not shown), 37 h after cardiac
arrest. The section has been immunolabeled for both poly(ADP-
ribose) (brown reaction product) and the neuronal microtubule-
associated protein, MAP2 (dark purple reaction product).
Several of the nuclei that contain poly(ADP-ribose) are sur-
rounded by cytoplasm with strong MAP2 labelling (arrows).
Reproduced with permission from Neuropathol Appl Neurobiol,
in press, reference 87.



infarct, implying continuing consumption of NAD+ in
tissue that may be of marginal viability (Fig 3). These
findings suggest that early administration of PARP
inhibitors may limit brain damage due to focal arterial
occlusion or transient global brain ischemia.

Apoptosis
Oxidative injury of sufficient severity to DNA and

other macromolecules causes cell death that may be
either necrotic or apoptotic. Multiple factors probably
determine which mode of cell death prevails, amongst
them: the type of cell, severity and precise nature of
oxidative injury, and possibly the basal level of NAD+

(9, 15, 28, 67, 78, 102, 104). Although the mode of cell
death after brain ischemia is predominantly necrotic,
apoptosis of neurons and glia has been demonstrated in
numerous animal models of temporary or permanent
brain ischemia (see, for example, 12, 14, 26, 79, 80).

Expression of caspase-3, an interleukin-1b-convert-
ing enzyme-like protease that plays a key role in the ini-
tiation of apoptosis (42, 101, 117), is enhanced during
the first few hours after transient ischemia (13, 97, 100).
Caspase-3 cleaves and inactivates PARP at the onset of
apoptosis (75, 117). Inhibition of caspase-3 and conse-
quent prevention of PARP cleavage also prevents apop-
tosis (101). Conversely, over-expression of caspase-3
induces apoptosis (42). Observations supporting the
importance of caspase-3 in mediating post-ischemic
brain damage include: (i) caspase-3 mRNA and protein
expression were particularly enhanced in CA1 pyrami-
dal neurons, that subsequently underwent apoptosis, in
mouse and rat models of transient focal ischemia (13,
100), and (ii) inhibitors of interleukin-1b-converting
enzyme-like proteases reduced infarct size and
improved clinical outcome, even when administered
several hours after ischemia, especially after ischemia
that was relatively brief (13, 49, 37).

The possible role of PARP itself in apoptosis is con-
troversial. Although over-activation of PARP results in
cell necrosis not apoptosis, several researchers have
reported that PARP inhibitors reduce apoptosis in vitro
(71, 138, 148) and in vivo (67, 72). The apoptosis that
results from oxidative injury is generally preceded by
increased poly(ADP-ribosyl)ation of nuclear proteins
(71, 117, 148). Yoon et al (148) suggested that the
poly(ADP-ribosyl)ation of histone H1 protein may
facilitate subsequent internucleosomal DNA fragmenta-
tion during apoptosis by increasing the susceptibility of
chromatin to endonuclease. Apoptosis does, however,
occur perfectly well in cells from PARP-knockout mice
(77, 142).

In summary, activation of PARP and the resulting

depletion of energy due to consumption of NAD+ make
a substantial contribution to necrotic cell death after
global or focal brain ischemia. PARP is inactivated by
caspase-3-mediated cleavage prior to apoptosis and is
not needed for apoptosis to occur. Apoptosis may, how-
ever, be facilitated by the prior poly(ADP-ribosyl)ation
of some nuclear proteins, including histone H1.
Enhanced expression of caspase-3, with resulting apop-
tosis, accounts for a clinically significant proportion of
neuronal death in some animal models of transient focal
brain ischemia.

Therapeutic approaches to preventing oxidative
stress and its consequences in brain ischemia in
man

Reference has already been made to the numerous
studies of glutamate antagonists, non-selective and
selective inhibitors of NOS, and inhibitors of PARP and
of interleukin-1b-converting enzyme-like proteases
(including caspase-3) in experimental brain ischemia.
Several therapeutic approaches to reducing oxidative
stress after brain ischemia are being tested in stroke
patients. Tirilazad mesylate, a lazaroid (21-aminos-
teroid) that acts as a free radical scavenger, has been
investigated as a neuroprotective agent in patients with
subarachnoid hemorrhage (SAH). The two large trials to
date have yielded conflicting findings. In a multicenter
European, Australian and New Zealand trial, tirilazad
reduced mortality and significantly improved functional
outcome in men with SAH, although not in women (66).
However, the same dose of tirilazad did not improve the
outcome after SAH in patients participating in a multi-
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Figure 3. Poly(ADP-ribose) accumulation after focal
atherothrombotic infarction. A line of early demarcation is visi-
ble (arrows) between acutely infarcted cortex (towards bottom
right of figure) and adjacent, preserved cortex (towards top left).
Many neurons in the preserved cortex adjacent to the infarct
are strongly immunolabeled for poly(ADP-ribose).



center North American trial (47). More recently, the
administration of ebselen, a seleno-organic compound
with antioxidant activity, was shown to reduce delayed
ischemic neurological deficits after SAH (119) and to
improve outcome after stroke (147). Other antioxidants
that have shown some promise in the treatment of acute
myocardial infarction but have not been evaluated in
stroke patients include N-acetylcysteine (given with
nitroglycerin and streptokinase) (3) and a combination
of selenium and coenzyme Q10 (70).

Several NMDA antagonists have been tested in
stroke patients. The clinical experience with these drugs
was reviewed by Muir and Lees (92) and Lees (76).
Most of the NMDA antagonists are poorly tolerated
when administered in doses sufficient to achieve neuro-
protective drug levels. Side effects include hypertension,
sedation, confusion, hallucinations and, at high doses,
catatonia. Studies with selfotel and eliprodil were dis-
continued because of the unacceptable side effects at
higher doses and lack of evidence of benefit at doses
that were clinically tolerable. The ratio of benefit to side
effects may be more favorable for aptiganel, trials of
which are still in progress.

PARP inhibitors have not yet been tested in stroke
patients but have been used as adjunctive therapy for
several other diseases in which oxidative damage to
DNA and over-activity of PARP have been implicated.
Nicotinamide (niacinamide), in particular, has been
found to be of benefit in delaying the progression of
recent-onset insulin-dependent diabetes mellitus
(34,44,111-113). There are also anecdotal reports of its
benefit in bullous pemphigoid (53,109), lichen planus
pemphigoides (43) and osteoarthritis (65).

Conclusions
There is increasing evidence that a substantial pro-

portion of the cell death that occurs after brain ischemia
results directly or indirectly from oxidative injury to
DNA and other macromolecules. The injury is mediated
through a complex cascade of metabolic events that
involves glutamate and its transporter proteins, NMDA
and probably also AMPA and KA receptors, nitric oxide
synthases, several other enzymes responsible for the
generation of superoxide and other reactive oxygen
species, caspase-3, and PARP. The mode of cell death
may be apoptotic or necrotic, although the latter proba-
bly predominates, at least in human brain ischemia.
Experimental observations and preliminary data from
clinical studies in stroke patients suggest that a large
part of the cell death due to oxidative injury may be pre-
ventable by the early administration of antioxidants and,

possibly, by use of selective NOS inhibitors and gluta-
mate antagonists. Results from recent experimental
studies indicate that the degree of neuroprotection
afforded by inactivating PARP is greater than that result-
ing from the use of free radical-scavenging agents,
NMDA antagonists, or from inhibiting NOS. This is
presumably because PARP activation is a final common
pathway of several processes that contribute to DNA
damage and cell death after brain ischemia. The ‘win-
dow of opportunity’ for clinically effective use of PARP
inhibitors after cardiac arrest or stroke may be wider
than is the case for interventions that act ‘upstream’ of
PARP in the cascade of events that follows an ischemic
episode. PARP inhibitors are already used clinically in
other contexts and data from trials in stroke patients
should soon be forthcoming. The development of spe-
cific caspase-3 inhibitors is still at a relatively early
stage but in time these may also prove useful, possibly
in preventing delayed neuronal apoptosis after the
immediate ischemic damage.

As individual steps have been elucidated in the
oxidative injury cascade that follows brain ischemia,
each has become a potential target for therapeutic inter-
vention. The multiplicity of pathways and processes
involved suggests that there is considerable potential for
additive or synergistic benefit from combined therapies.
We have certainly not reached the end of the line in this
field of investigation and can expect to see the identifi-
cation of several further therapeutic targets and much
refinement of existing treatments.
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